Today, plant maintenance organizations are comprised of three intertwined “chain links”.
AT CCM, OEE IS ETE
In his current role as maintenance manager at CCM Tecate, Sanchez leads a high-energy team of 80 department members who are driven to impact the total effectiveness of equipment (or ETE, for Efectividad Total de los Equipos) and support the six pillars that comprise MAD.
ETE is better known in the U.S. as overall equipment effectiveness (OEE). At CCM, it is measured two ways. ETE Planta is derived from taking the percentage of plant availability times the percentage of plant performance times the percentage of plant quality. ETE Total is more stringent and multiplies the three components of ETE Planta along with the percentage of plant capacity utilization (plant and product demand is the extra factor).
“ETE is at the heart of the MAD philosophy,” he says. “All of the work that maintenance does and operations does influences the components of ETE.”
Daily work that makes a difference is encompassed in the six pillars — CCM’s building blocks of maintenance and reliability excellence whose purpose is to:
PILLARS OF STRENGTH
Maintenance management system is the first pillar of MAD. Its deliverables are in the definition and application of best maintenance and reliability practices, and in focusing on tasks that add value. The goal is to create the system that supports world-class maintenance and reliability.
The delineation and interplay of the three maintenance functions is found in this pillar, as are the guidelines for effective planned maintenance. Planning is captained by three full-time staffers and generated through the maintenance component of the company’s SAP system, which must be fully optimized as a work order and machine history tool.
Practices such as just-in-time procurement of MRO products through strategic distribution partners and kitting (100 percent of all planned work orders go this route) streamline the “job planned to job completed” process and lowers inventory and cost.
“We want people in each function to focus on the tasks that add value, not on the tasks that do not add value,” says MAD coordinator Edgard Espinoza. “We don’t want a mechanic searching for or gathering parts. We want to make it easy for him. We want to eliminate the non-value-added tasks in everyone’s routines.”
Improvement of equipment and processes is the second pillar. It provides the structure and tools to analyze failures, solve problems and work on formal improvement projects.
As in the first pillar, the push is to focus time and activities in the most efficient way. Is a mechanical failure a chronic issue or a sporadic issue? Does it have a high impact in terms of cost, downtime or safety, or is it relatively benign? Is it an issue in need of immediate attention or is it an issue that you can live with until a to-be-determined date? Team members are highly trained to use tools such as Pareto analysis, kaizen, root cause analysis, failure modes and effects analysis, and five-why problem-solving in order to get the real answers to these and other questions.
Improvement projects, generated to address specific needs or opportunities, are completed by teams or individuals in maintenance.
“Projects improve the equipment and improve the results of the company,” says Alberto Diaz, a predictive maintenance technician who Sanchez dubs “the coordinator of solutions for chronic problems.”
“The project might incorporate new equipment or new technology into the process. It can involve construction, installation, implementation and obtaining results. The maintenance department is responsible for these projects.”
Maintenance has completed 100 projects since 2003, including 43 in 2007. Plant employees can access an intranet site to track the status of ongoing projects and view the results of completed ones.
“Successful projects are sustainable and obtain the goals of improved productivity, quality and safety and reduced costs,” says Espinoza. “When you sustain the goal, then you have solved the problem.”
Early administration of the equipment is the third pillar. Its emphasis is on the proactive pursuit of maintainability and reliability in new equipment.
“Traditionally, you have problems in the early stages after you bring new equipment on line,” says maintenance engineer Adolfo Esquer. “The problems either come from the supplier, or they are created in the installation and implementation phases.”
CCM Tecate assembles a cross-functional team, led by maintenance engineering, and works with the original equipment manufacturer to design the purchased machine to the plant’s maintenance and reliability specifications.
“We dedicate many men to identifying potential problems,” says Sanchez. “The problems are eliminated before the equipment is brought into the plant and before it is turned over to production. If you spend a little bit more money on the front end, it saves you more on the back end.”
Project details are entered into the computerized maintenance management software system and accessed for future equipment purchases.
“We want to learn from previous projects and not have to reinvent the wheel each time,” says Espinoza.
Develop the skills and abilities of the personnel is the fourth pillar. As Sanchez alluded to earlier, MAD does mean smart. Here, maintenance takes the lead in improving the technical, diagnostic and problem-solving abilities of its employees and those in operations.
More than 80 courses are offered to new and veteran employees on topics such as pump maintenance, bearings, boiler operation, failure detection, instrumentation/ controls and mechanical basics.
The company performs assessments to identify areas of need and career enhancement. Courses are administered through a training and administration intranet site called SICAP (Sistema de Capacitación de Personal).
On average, Tecate employees took four courses totaling 79 hours in 2007.
“This is personal utilization,” says Sanchez. “Are we truly utilizing our employees to their capability and potential? Through these courses, we can.”
Training also comes through One-Point Lessons — visual, one- to two-page instruction manuals that provide operators knowledge on a single component of their equipment or a single facet of operator-based maintenance.
Autonomous maintenance is the fifth pillar. This is the work most commonly associated with Total Productive Maintenance. Within MAD, it contains the guidelines for operators to safely clean, inspect and lubricate (CIL) their machines, as well as to eliminate the potential sources of contamination.
The pillar begins with an examination of the equipment within a particular process. Maintenance responsibilities are divided between operators and mechanics based on the technical nature of the equipment, the operator’s experience with the equipment, safety issues (including electrical and mechanical hazards) and workload (the number of activities the operator can fit into his or her schedule).
Operators are then trained in inspection techniques for their particular piece(s) of equipment. They are educated on proper lubrication practices and methods to avoid lubrication-induced contamination.
Checklist sheets serve as a daily reminder not only of required CIL tasks but of the steps required to complete the tasks. Pictures and diagrams take the operator through the proper sequence. The sheet also includes an area for the operator to provide comments or report any abnormalities.
Additionally, this pillar stresses that operators take ownership of their machines by leading improvement projects in their work area. Every two months, the plant highlights projects that impacted productivity, reliability, quality or safety. An annual awards program provides cash prizes for the year’s best ideas.
Assurance of practices is the sixth pillar. The brewery performs an internal audit every two months to gauge the health of MAD. A comprehensive annual audit is performed by a team led by assessors from corporate headquarters. The yearly assessment is based on a model constructed by the Japan Institute of Plant Management and involves evaluated progress in 140 categories. The categories are derived from the MAD pillars.
“Can you verifiably show that you are doing this within Pillar 1?” says Sanchez. “And if you are doing this, at what level are you?”
A score of zero to 1 puts you at the preparation level, 1 to 2 is development, 2 to 3 is consolidation, 3 to 4 is stabilization and 4 to 5 is excellence.
A comprehensive evaluation score is calculated from the sub-scores in the 140 categories and used to denote program maturity and growth.
“This process verifies where you stand,” says Sanchez. “You may think that you are good, but the end results may show otherwise. The numbers don’t lie.”
Tecate scored a 1.9 in its 2003 audit, then followed that up with a 2.7 for 2004, a 3.65 for 2005 and a 3.89 for 2006. It cracked the “excellence” level with a 4.03 in 2007. As you can see, the more mature the program, the tougher it is to raise the figure. At this stage of the game, it’s about sustainment and gaining hundredths of a percentage point.
(To be continued)
Source: Reliable Plant